PoC – Beweis per vollständiger Induktion
Dem mathematisch versierten Leser erschließt sich sofort worauf dieser Artikel abzielt, es geht um die Analogie zwischen dem Proof-of-Concept (PoC) im Projektmanagement und dem mathematischen Beweisprinzip der vollständigen Induktion und darum, was uns dieser interdisziplinäre Exkurs über den PoC lehren kann.
Musterschüler
Ziel eines Induktionsbeweises ist es, eine Aussage für alle natürlichen Zahlen n ≥ n0 zu beweisen.
Dabei geht man in zwei Schritten vor:
- Induktionsanfang: Zeige, dass die Behauptung für den Startwert n0 gilt (in den meisten Fällen 0, oder 1).
- Induktionsschritt: Zeige die Behauptung für n + 1 unter der Annahme, dass sie für n gilt.
Das wohl berühmteste Beispiel eines Induktionsbeweises ist die Gaußsche Summenformel. Die Legende erzählt von einem Lehrer, der seiner Klasse die langwierige Aufgabe stellt, alle Zahlen von 1 bis 100 zu addieren. Er erhofft sich so eine ruhige Unterrichtsstunde. Ein Schüler legt ihm jedoch schon nach kurzer Zeit die korrekte Summe auf den Tisch: Dieser Schüler war kein geringerer als Carl Friedrich Gauß. Er hatte erkannt, dass die Ränder jeweils 101 ergeben und das 50-mal, so dass sich die Summe aus 101 * 50 = 5050 ergibt.
Die allgemeine Formel für die Summe der ersten n natürlichen Zahlen lautet ½ n (n+1). Diese Aussage mittels vollständiger Induktion zu beweisen sei dem Leser überlassen. Durchzuführen ist der Induktionsanfang mit n = 1 und anschließend der Induktionsschritt für n + 1.
Über die Implementierung hinausdenken
Um in der Analogie zum PoC zu bleiben, ist die Aussage die, dass ein gewisser Sachverhalt umgesetzt werden kann. Der Induktionsanfang entspricht der implementierten Lösung und der Induktionsschritt besteht in der Argumentation, dass das umgesetzte Szenario tatsächlich die Machbarkeit im großen Rahmen belegt.
Was können wir aus dieser Analogie lernen?
Nun, zunächst ist klar, dass ein PoC mitnichten nur aus der implementierten Lösung besteht, sondern dass vielmehr die anschließende Argumentation für den Erfolg ausschlaggebend ist. Die Implementierung ist nur der Anfang, nichtsdestotrotz ist sie unerlässlich für den Beweis der Aussage. Die Rahmenbedingungen des Induktionsanfangs müssen so gewählt werden, dass sie den Induktionsschritt gezielt unterstützen. Oder anders ausgedrückt, die Rahmenbedingungen der Implementierung müssen so gewählt werden, dass sie die Argumentation gezielt unterstützen.
Paradoxe Pferde
Dass vor allem Letzteres äußerst wichtig ist, sieht man auch am sogenannten Pferde-Paradox. Dabei kann man mit Hilfe der vollständigen Induktion scheinbar beweisen, dass alle Pferde dieselbe Farbe haben.
Der Induktionsanfang mit n = 1 ist klar. Ein Pferd hat dieselbe Farbe wie es selbst.
Nun nimmt man eine Menge aus n + 1 Pferden und teilt diese in zwei Mengen auf, eine mit n Pferden und eine mit einem Pferd P. Die Aussage gilt ja laut Voraussetzung für die Menge mit n Pferden, hier haben alle Pferde dieselbe Farbe. Entfernt man ein Pferd aus dieser Menge und ersetzt es durch das zusätzliche Pferd P, so bleibt es eine Menge von n Pferden. In dieser Menge müssen also wieder alle Pferde dieselbe Farbe haben. Folglich haben alle n + 1 Pferde dieselbe Farbe, womit der Beweis erbracht wäre.
Der Fehler liegt hier jedoch darin, dass der Induktionsschritt n ≥ 2 voraussetzt. Denn wenn man im Falle von n = 1 ein Pferd aus der Menge mit n Pferden entfernen würde, bliebe nur eine leere Menge übrig. Der Induktionsanfang mit n = 1 ist also nicht ausreichend, er muss für n = 2 erbracht werden. Die Aussage ist nur unter der Voraussetzung haltbar, dass sie bereits für n = 2 gilt. Allerdings kann im Allgemeinen natürlich nicht davon ausgegangen werden, dass zwei Pferde dieselbe Farbe haben.
Haltbare Aussagen treffen
Man sieht also, dass auch ein gelungener Induktionsanfang zusammen mit einem schlüssigen Induktionsschritt nicht zwangsläufig zum Erfolg führen muss, wenn die Rahmenbedingungen des Induktionsanfangs falsch gewählt worden sind. Analog dazu kann es beim PoC zu Problemen führen, wenn bei der Implementierung zu viele Kompromisse eingegangen werden. Wenn die Implementierung beispielsweise zu klein dimensioniert wird, ist sie unter Umständen nicht aussagekräftig genug. Dadurch können sich bei der darauf aufbauenden Argumentation Fehler einschleichen. Wenn die Zeit, oder die Mittel fehlen, um den Induktionsanfang auch für n = 2 durchzuführen, sollte man zumindest im Induktionsschritt darauf hinweisen, dass die Aussage nur unter der Annahme bewiesen werden kann, dass sie auch für n = 2 gilt. Genauso wie der Induktionsschritt nicht haltbar ist, wenn die Verankerung im Induktionsanfang fehlt, so ist auch der ganze PoC in Gefahr, wenn Implementierung und Argumentation nicht sauber aufeinander abgestimmt sind.
Mathematische Konzepte in der Praxis
Mathematische Konzepte auf die Praxis anzuwenden ist eine sehr große Herausforderung. Im Projekt sind Kompromisse in der Regel unumgänglich. Aufwand, Budget und verfügbarer Zeitrahmen müssen immer wieder gegen den Umfang der implementierten Lösung abgewogen werden und die Prüfung der Machbarkeit ist stets höher einzuschätzen als eine schöne, oder besonders nachhaltige Implementierung. Darüber hinaus gilt es eine Vielzahl an Anforderungen von verschiedenen Seiten auf einen gemeinsamen Nenner zu bringen. Dennoch muss zu Beginn des PoC die Erwartungshaltung allen Beteiligten klar sein, oder um im Bild zu bleiben, die Aussage, welche mit dem Beweis untermauert werden soll. Während der Induktionsbeweis bereits bei einer vorgegebenen Aussage ansetzt, muss jene beim PoC erarbeitet werden. Ein Teil dessen kann sein, die Anforderungen nicht einfach nur zu sammeln, sondern kritisch zu hinterfragen und sowohl im Einzelnen, als auch im Gesamtbild neu zu bewerten.